

LABORATORY PERFORMANCE REPORT

In accordance with

BS EN 1177:2018 - Method 1* - Determination of Impact Attenuation

Sample Reference Winner Velour Summer Green + Trocellen 30mm

Report Number 19578/4081

Report Status Final

Issue Date 12/06/2019

Client Playrite

Wellington Mills Liversedge **West Yorkshire WF15 7FH**

- This report has been prepared by Sports Labs limited with all reasonable skill, care and diligence within the terms of the contract with the Client and within the limitations of the resources devoted to it.
- This report is confidential to the Client and Sports Labs Limited accepts no responsibility whatsoever to third parties to whom this report, or any part thereof, is made known. Any such party relies upon the report at their own risk.
- This report shall not be used for engineering or contractual purposes unless signed by the Author and the Checker and unless the report status is "Final". 3.
- *Not all tests carried out are within our scope of ISO 17025 Accreditation. Comments and opinions are outwith the scope of our ISO 4. 17025 accreditation.

Sports Labs Ltd 1 Adam Square, Brucefield Industry Park Livingston EH54 9DE Scotland, United Kingdom

Tel: +44 (0) 1506 444 755 Email: info@sportslabs.co.uk Web: www.sportslabs.co.uk

- USA
- Morocco
- TurkeySouth Africa
- Netherlands
- Belgium
- Norway Israel

1.0 INTRODUCTION

We refer to the sample of playground surfacing delivered to our Laboratory. The client requested testing to be carried out in accordance with the requirements of BS EN 1177:2018* - Determination of Impact Attenuation.

Prepared By

Craig Melrose

Laboratory Co-ordinator 12/06/2019

Checked By Sean Ramsay

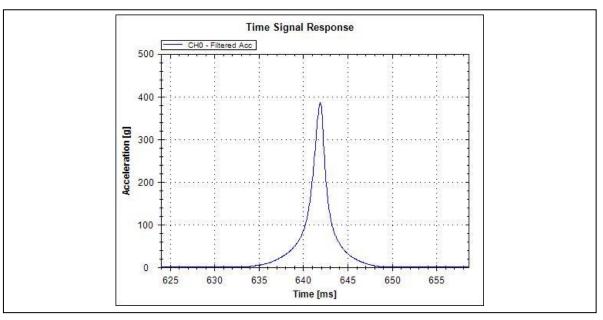
, y

Laboratory Director 12/06/2019

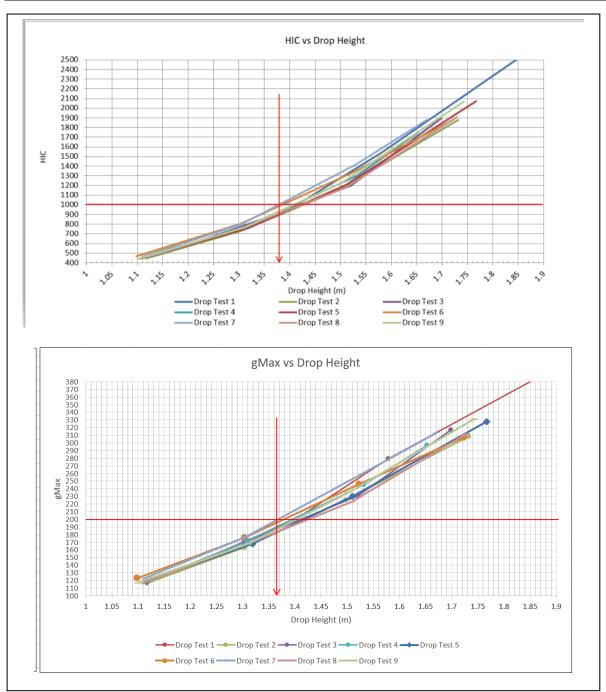
TEST DETAILS						
System Name	Winner Velour Summer Green + Trocellen 30mm					
Test Condition	Dry					
Surface Temperature (°C)	23.5 ℃					
Air Temperature (°C)	22.0 °C					
Relative Humidity (%)	42 %					
Infill Rates (kg/m²)	12 kg/m²					
Fixing Method	Self Weighted					
Test Sample Dimension	1.0m x 1.0m					
Substrate	Concrete					
Shockpad	Trocellen 3030XC NW					

2.0 TEST DETAILS

- 2.1 The test specimen was prepared in accordance with the manufacturer's instructions.
- 2.2 The specimens were tested in the conditions and temperatures described in BS EN 1177: 2018* to Method 1 for surfacing consisting of more than one component.

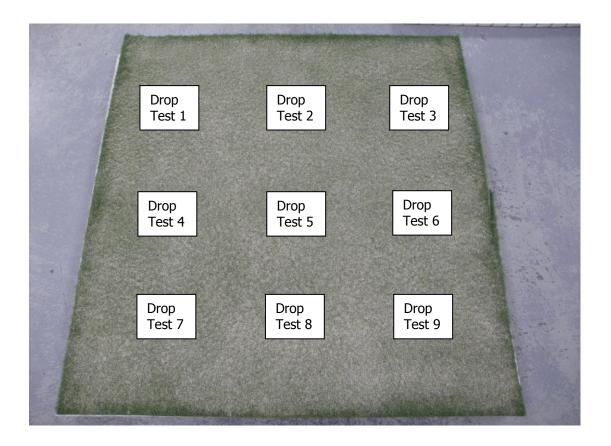

The results contained within this report apply to the sample provided and test conditions detailed. Whilst the methods described in BS EN 1177:2018 can be used to assess the impact attenuation performance of surfaces, attention of users is drawn that the behaviour of some materials can be highly variable and dependent on prevailing test conditions and that test results will likely vary over time or with climatic conditions.

- 3.0 TESTING
- 3.1 Determination of Impact Attenuation BS EN 1177: 2018*.
- 4.0 TEST RESULTS
- 4.1 Detailed test results are given overleaf in tabular format.



5.0 HIC (CRITICAL FALL HEIGHT) TEST RESULTS

Drop Test 1		Drop Test 2			Drop Test 3			
Drop Height (m)	HIC	gMAX	Drop Height (m)	HIC	gMAX	Drop Height (m)	HIC	gMAX
1.148	494	126	1.117	445	116	1.125	465	121
1.397	946	198	1.303	728	163	1.302	760	169
1.579	1536	279	1.497	1152	225	1.521	1200	231
1.868	2582	387	1.732	1879	308	1.698	1894	317
Drop Test 4			Drop Test 5			Drop Test 6		
Drop Height (m)	HIC	gMAX	Drop Height (m)	HIC	gMAX	Drop Height (m)	HIC	gMAX
1.12	456	119	1.117	457	119	1.098	470	123
1.311	767	172	1.319	759	168	1.303	802	176
1.532	1299	245	1.510	1203	230	1.523	1330	246
1.653	1747	297	1.767	2071	328	1.723	1884	307
Drop Test 7		Drop Test 8			Drop Test 9			
Drop Height (m)	HIC	gMAX	Drop Height (m)	HIC	gMAX	Drop Height (m)	HIC	gMAX
1.110	465	122	1.108	441	116	1.100	441	117
1.306	803	177	1.310	769	168	1.311	764	168
1.530	1418	260	1.509	1175	223	1.502	1228	235
1.670	1879	313	1.729	1909	312	1.743	2069	331



Calculated Critical Fall Height Value uncertainty of ±7 % 1.37 m	
---	--

6.0 SURFACE PHOTOGRAPH/TEST LOCATIONS

End of Report